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We have computed an estimate of the angular power spectrum of the Cosmic Microwave Background

(CMB) induced by cosmic strings on angular scales >
�

150, using a numerical simulation of a cosmic
string network and have decomposed this pattern into scalar, vector, and tensor parts. We �nd

no evidence for strong acoustic oscillations in the scalar anisotropy but rather a broad peak. The

anisotropies from vector modes dominate except on very small angular scales while the tensor
anisotropies are sub-dominant on all angular scales. The anisotropies generated after recombination

are even more important than in adiabatic models. We expect that these qualitative features are

robust to the varying of cosmological parameters. The calculation has a number of uncertainties,
the largest of which is due to �nite temporal range.

The spectrum of CMB anisotropy on the angular scales
somewhat smaller than that subtended by the horizon
at last scattering provides a powerful probe of the na-
ture of inhomogeneities and matter in our universe [1].
On these scales hydrodynamical e�ects can leave charac-
teristic signatures of adiabatic or isocurvature perturba-
tions [2], active or passive perturbations [3], an open or
closed universe, or even a high or low Hubble constant.
Cosmic strings are topological defects which may have
formed in the very early Universe and may be responsi-
ble for the formation of large scale structure observed in
the Universe today [4]. While cosmic string induced per-
turbations are clearly both isocurvature and active the
interplay between these two properties allows a range of
possible behavior for the degree scale anisotropy [5]. One
method for determining the signature for cosmic strings
is via simulation, i.e. by numerically evolving a network
of cosmic strings in a simulated universe and comput-
ing the pattern of anisotropy they would produce. We
present the results of just such a calculation in this Let-

ter. While we have not explored the full range of cosmo-
logical parameters, or included all the e�ects on network
dynamics, our results are suggestive of what is and is not
important for small scale anisotropies from the cosmic
string model.

I. METHODOLOGY

Cosmic strings only interact gravitationally with the
rest of the matter and produce only small metric pertur-
bations. Thus we may ignore back-reaction of the metric
perturbations on the strings and solve for the evolution
of the string network in an unperturbed cosmology. This

\sti�-source" approximation allows us to do the string
simulation and later compute the perturbations to the
matter. It also allows us to reuse the the same string sim-
ulation to compute the perturbations in cosmologies with
di�erent matter content. Here we have reused one of the
simulations that was was used in Allen et al. [6]. While
that simulation took the size of the simulation box to be
twice the present day horizon, we may use the assumption
of self-similar evolution of the string network (\scaling")
to rescale the box to a smaller size while simultaneously
decreasing both the starting and ending time of the simu-
lation. The equations of motion of the strings will still be
satis�ed so long as the cosmological expansion remains a
power law, which in this case is a / t

2
3 , corresponding to

a at FRW matter dominated universe. These simula-
tions should not be used for epochs too close to matter-
radiation equality, which means that if we want to study
the e�ects close to recombination we should really only
consider a large Hubble constant which puts recombina-
tion long after matter-radiation equality. Here we use
H0 = 80, but even with this Hubble constant the e�ects
of the matter-radiation transition are liable to be signif-
icant, and below we discuss what these e�ects are liable
to be. Throughout we take the baryon fraction 
b = :02
to be consistent with the predictions of nucleosynthesis.
The cosmic string simulation is in a cubical box whose

comoving size we denote by L. The initial timestep,
when the comoving horizon (� conformal time) is given
by �i = 0:05L, after which the string network rapidly re-
laxed to its scaling con�guration by the time � = 0:055L.
The simulation ends at �f = 0:5L. During this period the
universe has grown by a factor of 100. In order to use this
simulation to compute small-scale anisotropies produced
near recombination one must make the measurement of
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the anisotropies long after the end of the string simu-
lation. One may do this by rescaling the simulation to
end just after recombination, but continuing to propagate
the brightness pattern unperturbed through the periodic
box until today. This free-streaming procedure will lead
to a brightness pattern which is quasi-periodic on the
sky, the size of the periodic patches being the angle sub-
tended by length L when placed at the distance of the
surface-of-last-scattering. We expect that the statistical
properties of the pattern in each of these patches will be
nearly the same as for a similar sized patch in an in�nite
non-periodic universe.
Since the metric perturbations are small we may use

the linearized Einstein equations for the metric and the
linearized Boltzmann equation for the anisotropies. This
makes the equations for the temperature anisotropy lin-
ear in the stress-energy of the strings, ��� . The dynam-
ics of the strings is described by non-linear equations,
and leads to the non-Gaussian distribution for ��� , but
the response of the photons to the strings is linear. The
solution of the linear equations may be written as a ho-
mogeneous and inhomogeneous part

�T

T
(n̂;xobs; �obs) =

�
�T

T

�I

+Z
d�0

Z
d3x0D��(n̂;x;x0; �; �0)���(x

0
n̂

0) (1.1)

where (�T
T
)I depends on the initial condition for the cos-

mological uids (CDM, baryons, photons, and neutrinos)
which is often referred to as compensation. We have com-
pensated the strings with adiabatic perturbations in the
other matter so as to make the total density initially uni-
form, just as in Ref. [6]. Clearly this is not exactly the
correct prescription except on superhorizon scales. Nev-
ertheless we �nd that (�T

T
)I is small in comparison with

the 2nd term (this is consistent with the results of Ref.
[7]). We think this is likely to remain true with di�erent
prescriptions for compensation.
The way we have used Eq. (1.1) is somewhat di�erent

than has typically been done in the past. Rather than
concentrating on a few xobs we will e�ectively compute
the entire brightness pattern throughout the simulation
box. This function of the 5-d phase space (n̂;xobs) would
require an unpractical amount of computer memory. One
can reduce the memory requirement by Fourier decom-
posing. the x-dependence and then, for each k-mode, ex-
panding the n̂-dependence in spherical harmonics, Y(l;m),
using a spherical polar coordinate system with the pole
in the direction of k. The beauty of this decomposition
is that the m = 0 terms correspond to scalar modes, the
m = �1 terms to vector modes, and the m = �2 to ten-
sor modes [8]. Modes with jmj > 2 are zero since they
are not coupled to the gravitational �eld (in linear the-
ory) and may be ignored. From the mode coe�cients,
�(l;m)(k), one may construct the volume average of the
Cl's measured by all the observers in the box:

Cl = Cl

S

+ Cl

V

+ Cl

T

(1.2)

where
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There are no cross-terms between di�erent terms because
all of the modes are orthogonal [9]. Applying this de-
composition to the right-hand-side of Eq. (1.1) induces a
scalar/vector/tensor decomposition of D�� and ��� . We
may perform the decomposition of ��� numerically. The
corresponding components of D�� are solutions of the
linearized Einstein-Boltzmann equation which we have
computed numerically using standard techniques [10].

II. TESTS

Our calculation has three parts: the string simulation,
the numerical calculation of the Green functions, and
the computation of the brightness perturbation, which
merges the two preceding parts. A number of tests have
been made on the simulation [6,11,7] which we do not
discuss here.
The Green functions have been tested in two ways.

First, the code which computes the scalar and tensor
Green functions [10] has been used to determine the an-
gular power spectrum for a model with adiabatic pertur-
bations only. These calculations agree to within a percent
with standard results. Although the vector Green func-
tions cannot be tested in this way, there is an analytic ap-
proximation in terms of spherical Bessel functions, which
holds after recombination. For this case, there is excellent
agreement between the analytic and numerical results.
Similarly, the scalar Green functions have been tested on
large scales by comparing with analytic approximations;
again we �nd excellent agreement.
To test the full pipeline of merging the Green functions

with the stress energies, we calculated the anisotropies in
a matter dominated universe with one domain wall [12].
The Cl's in this case can be calculated analytically. The
numerical results are in very good agreement with the
exact results.
The greatest limitation of our ability to accurately

compute the small angle CMB anisotropy is the lack of
dynamic range of the cosmic string simulation. Although
the simulation runs over a range of 10 in conformal time,
this is insu�cient to accurately follow the evolution of
modes fromwell outside to inside the horizon, where they
begin to oscillate. Our results indicate that modes well
inside the horizon make a signi�cant contribution to the
anisotropy. As an example, when � � 6=k, the traceless
part of j��� j2 is half its maximum value.
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Due to the limited spatial resolution of the cosmic
string simulation, a limited number of Fourier modes
of the source stress energy are available. To determine
whether this would prevent us from seeing \Doppler
peaks," we used the same number of modes over the same
range of time for a model with adiabatic initial condi-
tions, for which the exact results are known. Qualitative
agreement was obtained, as the peak structure and loca-
tion were clearly evident. Hence, we do not expect that
the limited spatial resolution should prevent us from re-
solving features in the angular power spectrum. Finite
grid e�ects lead to an arti�cial drop of only � 10% in the
amplitude of the angular power spectrum for the largest
l-values obtained from a simulation volume.
Finally, we have used the same simulation to calculate

anisotropies generated at di�erent times. However, we
do not expect there to be strong correlations in either
the source stress energy or the anisotropy on time inter-
vals longer than the run time of the string simulation.
Hence, we do not expect the re-cycling of the numerical
simulation to have a strong e�ect on our results.

III. RESULTS

We obtain the �nal angular power spectrum, Cl, by
combining the results from di�erent rescalings of the re-
sults of the cosmic string numerical simulation. As dis-
cussed earlier, we exploit the scaling properties of the
string network to make up for the �nite temporal dy-
namic range of the simulation. For multipole moments
in the range 2 < l < 20 (large angles) we use one box, cov-
ering the redshift range 0 < z < 100. For 100 < l < 800
(small angles) we use two di�erent boxes corresponding
to 700 < z < 17000 and 60 < z < 700.
Our results are shown in Figures 1 and 2. On large

angular scales, we see that the dominant source of the
anisotropy is due to vector perturbations. This is an
important result, as it means the COBE normalization
of the mass-per-unit-length is determined mainly by the
amplitude of the vector, not scalar, spectrum.
We may use the large angle results as a test of our

techniques, by comparing with the results of Ref. [6],
which used the same simulation. They found l(l+1)Cl �
350(G�)2 at large angles, so our results are a factor of
� 2:8 smaller. However, we are in accord with the shape
of the spectrum and the determination that the major-
ity of the large angle anisotropy is generated at redshifts
z <
� 20 (as in Fig. 3 of Ref. [6]). When normalizing

to COBE [13], we �nd �6 � G� � 106 = 1:7, a fac-
tor �

p
2:8 higher than that of Ref. [6]. This result is

comparable with �6 = 1:5(�0:5) [14], 1:7(�0:7) [15] and
2 [16]. Thus, our large angle normalization falls in the
middle of the range spanned by other calculations.
On small angular scales Figure 1 shows the contribu-

tion to the scalar Cl's from early times (z > 700). There
is a gradual rise in the spectrum from l = 100 till a very

broad plateau for l >� 200. The increase is less than a
factor of two so may not be signi�cant.
Calculating the contribution from the vector modes

and from the late time contributions to the scalar modes
presents a problem. In each case, the box size must be
chosen to be very large in order to get to very late times.
The smallest scales (l >� 300) therefore become unreli-
able. In Figure 2, we show the results for 100 < l < 300.
The most striking feature here is that both the vector
contribution and the late time scalar contribution are
larger than the early time scalars. The net result is that
the mild acoustic peak in the scalar spectrum becomes
hidden. The total spectrum therefore is quite at. (It is
unclear if the slight drop in the total is signi�cant.) While
these qualitative features appear to be robust, we believe
that in future work they will be subject to quantitative
changes which will tend to signi�cantly boost power on
small-angular scales.

IV. DISCUSSION

We have calculated the anisotropies in the CMB and
the perturbations to matter induced by a network of cos-
mic strings in the matter era. This calculation uses all the
components of the stress-energy tensor and exact Green
functions for all modes. The greatest source of uncer-
tainty in our results is due to the limited spatial resolu-
tion and run time of the numerical simulation.
On large scales, we �nd that the vector perturbations

are very important for the CMB anisotropy from cosmic
strings. Our results for anisotropies at small scales are
too low to be consistent with current measurements. Fu-
ture work will determine the e�ects of a radiation-matter
transition in the cosmic string simulation, in which the
long string density and rms velocity relaxes from the
radiation- to matter-era scaling values, inclusion of a
\wiggly" equation of state for the cosmic strings, or a
lower value of the Hubble parameter and a larger value
of the baryon density can boost the small-scale power
su�ciently. Since vectors dominate, even if any of these
e�ects do raise the early time scalar spectrum by as much
as a factor of two, the total power would only go up
by 20%. Even if a primary Doppler peak were to be-
come a more prominent feature, this work suggests that
secondary Doppler peaks are not anticipated in cosmic
string models. Finally let us mention that qualitatively
similar results have also been found for global defects
[17].
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FIG. 1. Angular Power Spectrum at large and small scales
for the cosmic string simulation. Tensors do not contribute

appreciably. On small scales only the contribution from early

times (z > 700) can be calculated reliably over the full range
of angular scales.

FIG. 2. Angular Power Spectrum at small scales for the

cosmic string simulation. The three di�erent contributions

are: the early time scalars; late time scalars; and vectors.
These add incoherently to give the total spectrum.
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